Risk-Based Distributionally Robust Optimal Power Flow With Dynamic Line Rating
نویسندگان
چکیده
منابع مشابه
Stochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization
We propose a data-driven method to solve a stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The objective is to determine power schedules for controllable devices in a power network to balance operation cost and conditional valueat-risk (CVaR) of device and network constraint violations. These decisions include scheduled power output a...
متن کاملDistributionally Robust Games with Risk-averse Players
We present a new model of incomplete information games without private information in which the players use a distributionally robust optimization approach to cope with the payoff uncertainty. With some specific restrictions, we show that our “Distributionally Robust Game” constitutes a true generalization of three popular finite games. These are the Complete Information Games, Bayesian Games a...
متن کاملDistributionally Robust Reward-Risk Ratio Optimization with Moment Constraints
Reward-risk ratio optimization is an important mathematical approach in finance. We revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken to mitigate the risk arising from ambiguity of the true distribution. We consider a distributionally robust reward-risk rat...
متن کاملDistributionally Robust Reward-risk Ratio Programming with Wasserstein Metric
Reward-risk ratio (RR) is a very important stock market definition. In order to capture the situation that the investor does not have complete information on the distribution of the underlying uncertainty, people extend RR model to distributionally robust reward-risk ratio (DRR) model. In this paper, we study the DRR problem where the ambiguity on the distributions is defined through Wassertein...
متن کاملDistributionally robust optimization with applications to risk management
Many decision problems can be formulated as mathematical optimization models. While deterministic optimization problems include only known parameters, real-life decision problems almost invariably involve parameters that are subject to uncertainty. Failure to take this uncertainty under consideration may yield decisions which can lead to unexpected or even catastrophic results if certain scenar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Power Systems
سال: 2018
ISSN: 0885-8950,1558-0679
DOI: 10.1109/tpwrs.2018.2844356